INTRODUCTION

- Mid-IR spectroscopy provides access to the information rich fingerprint region of the electromagnetic spectrum enabling identification and quantification of organic contaminants.
- Strong background absorption of water in the mid-IR region limits sensitivity.
- Sensitivity towards organic contaminants can be increased by coating highly attenuated total reflectance (ATR) crystals with polymer coatings.
- Analytes are reversibly absorbed and thereby concentrated in the coatings in the region probed by the evanescent wave, while excluding spectral interferences of water.
- Limits of detection (LOD) for chlorinated and aromatic hydrocarbons in the mid-low ppb region have been obtained.
- Polymer coatings used in literature rely on long enrichment paths, e.g. as thick porous a-SiO2 films or long porous enrichment materials.
- Diffusion can be enhanced by porous enrichment materials.
- Soft templating of sol-gel materials provides access to mesoporous films that can be easily organically modified.

DESIGN OF ENRICHMENT LAYER

Ordered periodic mesoporous materials with controlled pore size are synthesized by using surfactants as sacrificial template. e.g. soft templates such as surfactants or amphiphilic block copolymers.

SYNTHESIS & CHARACTERISATION

Mesoporous silica coatings were synthesized by acidic condensation of tetraethylorthosilicate in ethanol with cetyltrimethyl ammonium bromide as co-condensation agent. The silica films were obtained by spin-coating on polished silicon wafers and subsequent calcination at 400 °C or dissolution in acetone.

OPTICAL SETUP

ATR-Setup:
- Silicon wafer (20 x 10 mm pieces) with 45° (20 µm) connected to a peristalic pump.
- Transferable into Bruker Vertex 80v with UK-cooled MCT detector.
- Noise (RMS) 1.5 * 10^-1 A.U. (2200 – 1800 cm^-1, 128 scans, 16 s, water on coated Si ATR).

MID-IR SPECTROSCOPY

TRANSLATION OF A.U. TO ABS. CONCENTRATIONS

The path length d applies to transmission measurements and corresponds to the effective path length d_e in ATR spectroscopy and is defined as:

\[
d_e = d \times \frac{n_{silica} \times n_{air}}{n_{silica} + n_{air}}
\]

where:
- \(n_{silica} \) and \(n_{air} \) are the refractive indices of the silica film and air, respectively.

ENRICHMENT FROM GAS PHASE

- Hydrophobic film repels water, which is largely alleviated from the probed region (compare water absorption bands for coated and uncoated silicon wafer).
- Limit of detection for benzonitrile : 1 ppm
- Response and regeneration time: < 5 s
- Enrichment factor for benzonitrile : 200

SYNTHESIS

Mesoporous silica coatings were synthesized by acidic condensation of tetraethylorthosilicate in ethanol with cetyltrimethyl ammonium bromide as co-condensation agent. The silica films were obtained by spin-coating on polished silicon wafers and subsequent calcination at 400 °C or dissolution in acetone.

CHARACTERISATION

Coatings are IR transparent in the information rich region at >3300 cm^-1. FTIR-KBr spectrum of functionalized films shows absorption bands of Si-O-Si stretching modes around 1070 cm^-1. Bands at 1260 cm^-1 can be assigned to C-O deformation modes. X-ray diffraction patterns of two films are shown below and are in good agreement with literature. Transmission electron micrographs clearly show highly ordered pore structures throughout the film.

TRANSLATION OF A.U. TO ABS. CONCENTRATIONS

- Transmission measurements:
 \[
 K = \frac{1}{n_{silica} \times n_{air}} \times \frac{n_{silica} \times n_{air}}{n_{silica} + n_{air}}
 \]

ENRICHMENT FROM AQUEOUS PHASE

- Hydrophobic film repels water, which is largely alleviated from the probed region (compare water absorption bands for coated and uncoated silicon wafer).
- Limit of detection for benzonitrile : 1 ppm
- Response and regeneration time: < 5 s
- Enrichment factor for benzonitrile : 200

REFERENCE

CONTACT

bernhard.lendl@tuwien.ac.at