Hyperspectral imaging of hyphae and spores of *P. chrysogenum* using confocal Raman spectroscopy and SERS

Karina Wieland¹, Cosima Koch¹, Marwa El-Zahry¹, Johannes Offerer¹, Hinrich Grothe¹, Johann Lohninger³, Christoph Herwig¹, Bernhard Lendl¹

¹ Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
² Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
³ Institute of Chemical Engineering, Vienna University of Technology, Christian Doppler Laboratory on mechanistic and physiological methods for improved bioprocesses, Gumpendorferstraße 1a, A-1060 Vienna, Austria

INTRODUCTION

Penicillium chrysogenum is a filamentous fungus very well known for its capability to produce penicillin. In order to improve a fermentation process, detailed knowledge of the biochemical processes as well as the physiological state of the fungus during fermentation are essential and strongly linked to cell morphology. Therefore, the hyphae which are present as pellets in the bioreactor were measured with the confocal Raman imaging method in order to investigate any chemical differences indicating the physiological state of different parts of the pellet. The spectral data was analyzed applying non-supervised classification algorithms. Spores of *P. chrysogenum* which were also investigated do not only exhibit high autofluorescence masking the weak Raman signal, they are also very thermolabile. Thus, three different lasers (532 nm, 633 nm, 785 nm) were used to overcome carbonization of the sample during measurement. Finally, first spore spectra were generated with the SERS technique using silver nanoparticles. Furthermore, spore spectra were obtained with the 785 nm Raman laser which enabled us to differentiate between living and dead spores in a PCA score plot.

Three different Raman spectrometer were used for performing Raman measurements: Horiba Jobin-Yvon LabRam 800HR (Vienna University of Technology), Renishaw inVia Raman Microscope (Carnibian Tech Research, Villach), Thermo Scientific DXR Raman Microscope (testing device provided by Thermo Fisher Scientific).

P. chrysogenum HYPHAE

Raman measurements performed with two different lasers (532 nm, 633 nm) clearly indicate the 532 nm Raman laser provides the optimal excitation wavelength for the hyphae of *P. chrysogenum*.

Band assignments according to [1].

- 532 nm laser
- 10 x 2s acquisition time
- 0.01% laser power

Problem solving

Washed spore samples were placed onto a microscopic glass slide and dried at room temperature. Raman measurements were performed using the green (532 nm) and red (633 nm) laserline applying 0.01- 1 % laser power each. No Raman signal could be collected using a laser power below 1 %. However, graphite bands recorded with 1 % laser power indicate carbonization of the biological sample due to thermolability.

Hyperspectral imaging

Raman mapping was performed covering a sample area of 25x38 µm². Different groups of biological components with their characteristic bands could be detected. Molecule specific information such as the CH str. vibration is visualized in an intensity map.

Hyperspectral imaging

PCA (principal component analysis) and HCA (hierarchical cluster analysis) was applied to the data set in order to extract additional chemical information using ImageLab software (© Epina Software Labs).

Dead / alive study

Sample preparation according to [4].

- 50x objective
- 0.1% laser power

We acknowledge the help of Daniela Ehgartner and Lukas Neutsch for providing the samples. Additionally, we thank the Epina Software Labs (www.epina.at) for their support with ImageLab software used for the analysis of all the spectral data. We also thank Martin De Biasio (CTR Villach) for his support concerning measurements with the 785 nm Raman laser and Martin Kraft (CTR Villach) for providing the Renishaw inVia Raman Microscope. Financial support was provided by the Christian Doppler Gesellschaft and the Austrian research funding association (FFG) under the scope of the COMET program within the research network Process Analytical Chemistry (PAC) (contract # 852340).
